Oxidative modification of M-type K(+) channels as a mechanism of cytoprotective neuronal silencing.

نویسندگان

  • Nikita Gamper
  • Oleg Zaika
  • Yang Li
  • Pamela Martin
  • Ciria C Hernandez
  • Michael R Perez
  • Andrew Y C Wang
  • David B Jaffe
  • Mark S Shapiro
چکیده

Voltage-gated K(+) channels of the Kv7 family underlie the neuronal M current that regulates action potential firing. Suppression of M current increases excitability and its enhancement can silence neurons. We here show that three of five Kv7 channels undergo strong enhancement of their activity by oxidative modification induced by physiological concentrations of hydrogen peroxide. A triple cysteine pocket in the channel S2-S3 linker is critical for this effect. Oxidation-induced enhancement of M current produced a hyperpolarization and a dramatic reduction of action potential firing frequency in rat sympathetic neurons. As hydrogen peroxide is robustly produced during hypoxia-induced oxidative stress, we used an oxygen/glucose deprivation neurodegeneration model that showed neuronal death to be severely accelerated by M current blockade. Such blockade had no effect on survival of normoxic neurons. This work describes a novel pathway of M-channel regulation and suggests a role for M channels in protective neuronal silencing during oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 46: The Role of Kv7-Channels in the Pathophysiology of Multiple Sclerosis

Multiple sclerosis is an autoimmune CNS-disease characterized by inflammatory neurodegenerative events occurring with de- and remyelination. Recent evidence show that demyelinated neurons are less excitable than myelinated ones while at early stages of remyelination these neurons seem to be hyperexcitable. The latter is a transitory condition that, very likely, leads to impaired neuronal networ...

متن کامل

Effects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole

Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The ...

متن کامل

Effects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole

Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The ...

متن کامل

Improving CO2 adsorption with new amine-functionalized Y-type zeolite

In this work, a new synthesized Y-type zeolite with an Si/Al molar ratio of 2.5 (NaY) was modified with amines, in order to probe the influence of the modification of the adsorbent’s surface on CO2 adsorption. The three selected amines were diethanolamine, tetraethylenepentamine, and 2- methylaminoethanol. The surface nature of NaY was changed after amine modification, which causes a...

متن کامل

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The EMBO journal

دوره 25 20  شماره 

صفحات  -

تاریخ انتشار 2006